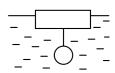
ОЛИМПИАДА "БУДУЩИЕ ИССЛЕДОВАТЕЛИ – БУДУЩЕЕ НАУКИ" 2015-2016 Физика, II тур

ОТВЕТЫ И РЕШЕНИЯ

7 класс

1. (30 баллов) Средняя скорость автомобиля на второй половине пути в 1,5 раза больше средней скорости на первой половине. Во сколько раз средняя скорость автомобиля на всем пути превышает среднюю скорость на первой половине пути.

Ответ: В 1,2 раза.


Решение: Обозначив полный путь через S и среднюю скорость на первой половине пути через V_1 , находим среднюю скорость на всем пути:

$$V_{\rm cp} = \frac{S}{S/(2V_1) + S/(3V_1)} = 1.2V_1.$$

2. (30 баллов) Переднеприводный автомобиль, у которого двигатель вращает передние колеса, трогается с места и набирает скорость. В какую сторону по отношению к вектору скорости автомобиля направлены силы трения, действующие на передние (10 баллов) и задние (10 баллов) колеса? Какая сила трения больше (10 баллов)?

Ответ: Сила трения, действующая на передние колеса, направлена вперед. Сила трения, действующая на задние колеса, направлена назад. Большей является сила, действующая на передние колеса.

3. (40 баллов) К плавающей в воде льдинке с помощью вмороженной в нее нити прикреплен снизу тяжелый шарик (см. рис.). Льдинка погружена в воду на 0,95 своего объема. После того, как льдинку перевернули и положили шарик на нее сверху, льдинка полностью погрузилась в воду, а шарик остался над поверхностью воды. Найти плотность материала, из которого сделан шарик. Плотность воды 1000 кг/м³, плотность льда 900 кг/м³.

Ответ: Плотность материала равна 2000 кг/м³.

Решение: В первом случае условие плавания и закон Архимеда приводят к уравнению

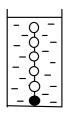
$$\rho_{\rm M}V + m = \rho_{\rm B}(0.95V + m/\rho_{\rm III}),$$

где V – объем льдинки, m – масса шарика, $\rho_{\rm n}$, $\rho_{\rm B}$ и $\rho_{\rm m}$ – плотности соответственно льда, воды и материала шарика

Во втором случае условие плавания и закон Архимеда дают уравнение

$$\rho_{\rm II}V + m = \rho_{\rm B}V$$
.

Выразим из последнего уравнения m и подставим в первое уравнение. После сокращения на V находим $\rho_{\text{III}} = 20(\rho_{\text{B}} - \rho_{\text{J}}) = 2000 \text{ кг/м}^3$.


1. (30 баллов) Средняя скорость автомобиля на второй половине пути в 1,5 раза больше средней скорости на первой половине. Во сколько раз средняя скорость автомобиля на всем пути превышает среднюю скорость на первой половине пути.

Ответ: В 1,2 раза.

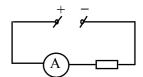
Решение: Обозначив полный путь через S и среднюю скорость на первой половине пути через V_1 , находим среднюю скорость на всем пути:

$$V_{\rm cp} = \frac{S}{S/(2V_1) + S/(3V_1)} = 1.2V_1.$$

2. (40 баллов) Гирлянда состоит из связанных нитями N шаров одинакового размера. Массы всех шаров, кроме более тяжелого крайнего, одинаковы. Когда гирлянду поместили в сосуд с водой, она приняла вертикальное положение с лежащим на дне тяжелым шаром и полностью погруженными всеми шарами (см. рис.). Силы, действующие на тяжелый шар со стороны нити и дна, равны. Вода выталкивает каждый из шаров с силой, вдвое большей веса легкого шара. Найти отношение масс тяжелого и легкого шаров.

Ответ: Отношение масс тяжелого и легкого шаров равно 2N.

Решение: Обозначим через m и M массы легкого и тяжелого шаров соответственно. Запишем условие равновесия для нижнего шара в виде


$$Mg = 2mg + 2F$$
,

где через F обозначена сила со стороны нити (дна) и учтено, что действующая на шар выталкивающая сила равна 2mg. Для остальной части гирлянды (состоящей из легких шаров) условие равновесия имеет вид

$$(N-1)mg + F = 2(N-1)mg$$
.

Выражая из последнего равенства F и подставляя полученное выражение в первое равенство, находим M/m = 2N.

3. (40 баллов) Подключенный к источнику постоянного напряжения последовательно с резистором амперметр (см. рис.) показывает ток 5 А. После того, как в цепь последовательно включили еще один резистор, ток стал равным 3 А. Какой ток покажет амперметр, если дополнительный резистор заменить на другой с сопротивлением в шесть раз большим?

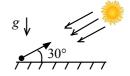
Ответ: 1 А.

Решение: Обозначив напряжение источника через U, сопротивления амперметра и резистора через $R_{\rm A}$ и $R_{\rm I}$, выразим из закона Ома ток $I_{\rm I} = 5$ A как

$$I_1 = \frac{U}{R_A + R_1} \, .$$

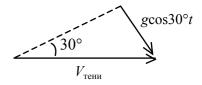
После включения дополнительного резистора с сопротивлением R_2 ток I_2 , равный 3 A, также выразим из закона Ома

$$I_2 = \frac{U}{R_A + R_1 + R_2}$$
.

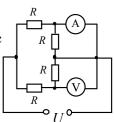

Искомый ток I_3 запишем аналогичным образом в виде

$$I_3 = \frac{U}{R_A + R_1 + 6R_2}$$
.

Из первого соотношения следует, что $R_{\rm A}+R_1=U/I_1$. Из второго соотношения следует, что $R_{\rm A}+R_1+R_2=U/I_2$, т.е. $R_2=U/I_2$ - U/I_1 . Подставляя найденные выражения в формулу для I_3 , получаем

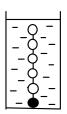

$$I_3 = \frac{U}{U/I_1 + 6(U/I_2 - U/I_1)} = \frac{1}{1/5 + 6(1/3 - 1/5)} = 1 \text{ A}.$$

1. (40 баллов) Камень брошен со скоростью V_0 под углом 30° к горизонту навстречу солнечным лучам (см. рис.). Найти ускорение, с которым тень от камня движется по земле (20 баллов). Через какое время скорость тени окажется равной скорости камня (20 баллов)? Ускорение свободного падения g считать известным.


Ответ: Тень движется с ускорением $gctg30^\circ = g\sqrt{3}$. Скорость тени окажется равной скорости камня через время $V_0 \sin 30^\circ/g = V_0/(2g)$.

Решение: На движении тени не сказывается движение камня вдоль солнечных лучей. В направлении, перпендикулярном солнечным лучам, начальная скорость камня равна нулю, его ускорение постоянно и равно проекции ускорения свободного падения, т.е. $g\cos 30^\circ$, а скорость равна $g\cos 30^\circ t$. Как видно из рисунка, скорость тени вдоль земли равна $g\cos 30^\circ t/\sin 30^\circ$. Таким образом, ускорение тени равно $g\cot 30^\circ = g\sqrt{3}$.

Скорость тени равна скорости камня в момент, когда камень движется параллельно земле, т.е. в высшей точке его траектории.


2. (30 баллов) Цепь из четырех одинаковых резисторов с сопротивлением R, амперметра с пренебрежимо малым сопротивлением и вольтметра с очень большим сопротивлением подключена к источнику с напряжением U (см. рис.). Найти показания амперметра (15 баллов) и вольтметра (15 баллов).

Ответ: Амперметр покажет ток U/R. Вольтметр покажет напряжение U/2.

Решение: Амперметр включен параллельно одному из сопротивлений (шунтирует его), поэтому ток через это сопротивление не идет, и его можно исключить из цепи. После этого показания приборов легко находятся.

3. (30 баллов) Гирлянда состоит из связанных нитями N шаров одинакового размера. Массы всех шаров, кроме более тяжелого крайнего, одинаковы. Когда гирлянду поместили в сосуд с водой, она приняла вертикальное положение с лежащим на дне тяжелым шаром и полностью погруженными всеми шарами (см. рис.). Силы, действующие на тяжелый шар со стороны нити и дна, равны. Вода выталкивает каждый из шаров с силой, вдвое большей веса легкого шара. Найти отношение масс тяжелого и легкого шаров.

Ответ: Отношение масс тяжелого и легкого шаров равно 2N.

Решение: Обозначим через m и M массы легкого и тяжелого шаров соответственно. Запишем условие равновесия для нижнего шара в виде

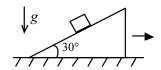
$$Mg = 2mg + 2F$$
,

где через F обозначена сила со стороны нити (дна) и учтено, что действующая на шар выталкивающая сила равна 2mg. Для остальной части гирлянды (состоящей из легких шаров) условие равновесия имеет вил

$$(N-1)mg + F = 2(N-1)mg$$
.

Выражая из последнего равенства F и подставляя полученное выражение в первое равенство, находим M/m = 2N.

1. (30 баллов) Камень брошен со скоростью V_0 под углом α к горизонту навстречу солнечным лучам (см. рис.). Через какое время скорость, с которой тень от камня движется по земле, окажется равной скорости камня (15 баллов)? Найти максимальную скорость тени (15 баллов). Ускорение свободного падения g считать известным.


Ответ: Скорость тени окажется равной скорости камня через время $V_0 \sin \alpha / g$. Максимальная скорость тени равна $2V_0 \cos \alpha$.

Решение: На движении тени не сказывается движение камня вдоль солнечных лучей. В направлении, перпендикулярном солнечным лучам, начальная скорость камня равна нулю, его ускорение постоянно и равно проекции ускорения свободного падения, т.е. $g\cos\alpha$, а скорость равна $g\cos\alpha t$. Как видно из рисунка, скорость тени вдоль земли равна $g\cos\alpha t/\sin\alpha$ и достигает максимума при максимальном t, т.е. в момент падения камня на землю ($t = 2V_0\sin\alpha/g$). Скорость

тени равна скорости камня в момент, когда камень движется параллельно земле, т.е. в высшей точке его траектории ($t = V_0 \sin \alpha/g$).

2. (25 баллов) На горизонтальном столе находится клин с углом 30° при основании, на наклонной грани которого лежит груз массы *т*. Коэффициент трения между грузом и клином равен 0,8. После того, как клин привели в ускоренное движение вдоль стола (см. рис.), груз стал двигаться в направлении, перпендикулярном наклонной грани клина. С какой силой клин давит на груз (10 баллов)? Чему равно ускорение клина (15 баллов)? Ускорение свободного падения *g* считать известным.

Ответ: Клина давит на груз с силой (5/8)mg. Ускорение клина равно $(\sqrt{3} - 5/4)g$.

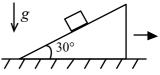
Решение: Записывая второй закон Ньютона для груза в проекции на ось, параллельную наклонной грани клина, находим, что сила трения $F_{\rm Tp}$ равна $mg\sin 30^\circ$. При скольжении $F_{\rm Tp}=\mu N$, где μ - коэффициент трения, а N - сила нормальной реакции (в данной задаче – сила давления клина на груз). Отсюда находим, что $N=mg\sin 30^\circ/\mu=(5/8)mg$. Записывая второй закон Ньютона в проекции на ось, перпендикулярную наклонной грани клина, находим ускорение груза $a=g\cos 30^\circ$ - $g\sin 30^\circ/\mu$. Проекция ускорения клина на эту ось равна ускорению груза (груз не отрывается от наклонной грани клина). Следовательно, ускорение клина равно $a/\sin 30^\circ=2a=(\sqrt{3}-5/4)g$.

3. (30 баллов) В сосуде под поршнем находятся один моль идеального одноатомного газа и тело с теплоемкостью 3R/2, где R=8,31 Дж/(К·моль) — универсальная газовая постоянная. Газ занимает объем V, его давление равно p. Поддерживая давление постоянным, объем газа медленно увеличивают вдвое. Затем газ изобарно возвращают к прежнему объему, сжимая его настолько быстро, что не успевает произойти теплообмен между газом и находящимся в сосуде телом. После возвращения к исходному объему теплообмен с окружающей средой прекращается. Какая температура установится в сосуде? Теплоемкостью стенок сосуда и поршня пренебречь.

Ответ: В сосуде установится температура 3pV/(2R).

Решение: Из уравнения Клапейрона-Менделеева следует, что после изобарного расширения газа его температура станет равной 2pV/R. В силу медленности процесса расширения такой же будет и температура находящегося в сосуде тела. После сжатия газа его температура станет равной pV/R, а температура тела останется прежней 2pV/R, поскольку не успеет произойти теплообмен между газом и телом. В результате последующего теплообмена между газом и телом в сосуде установится температура 3pV/(2R).

4. (15 баллов) В модели идеального газа пренебрегают суммарным объемом молекул по сравнению с объемом сосуда, т.е. молекулы рассматривают как материальные точки. Так, например, в уравнение Клапейрона-Менделеева в качестве доступного для движения молекул объема входит весь объем сосуда. Однако, пренебрегая размером молекул, нельзя объяснить наличие соударений между ними. Между тем, именно соударения играют определяющую роль в процессах установления равновесия в газах. Считая молекулы воздуха шариками с диаметром 3,5·10⁻⁸ см, оценить время между двумя последовательными

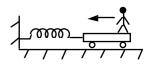

соударениями молекулы воздуха при нормальных условиях. Нормальное давление считать равным 10^5 Па, температуру равной 273 К. Постоянная Больцмана $k = 1,38 \cdot 10^{-23}$ Дж/К.

Ответ: Время между двумя последовательными соударениями составит ~2·10⁻¹⁰ с.

Решение: Длину свободного пробега молекулы λ (среднее расстояние между двумя последовательными соударениями) можно оценить по формуле $\lambda = 1/(\pi d^2 n)$, где d — диаметр молекулы, а n — концентрация молекул (число молекул в единице объема). Концентрацию n можно найти из формулы p = nkT, где p — давление, а T - абсолютная температура. При нормальных условиях получаем $n \approx 2,7 \cdot 10^{25}$ м⁻³. Подставляя в формулу для λ диаметр d и концентрацию n, находим $\lambda \approx 10^{-7}$ м. Взяв тепловую скорость молекулы воздуха равной примерно 500 м/с, находим, что время между последовательными соударениями молекулы составляет около $2 \cdot 10^{-10}$ с.

11 класс

1. (25 баллов) На горизонтальном столе находится клин с углом 30° при основании, на наклонной грани которого лежит груз массы m. Коэффициент трения между грузом и клином равен 0.8. После того, как клин привели в ускоренное движение вдоль стола (см. рис.), груз стал двигаться в направлении, перпендикулярном наклонной грани клина. С какой силой клин давит на груз



 $(10 \, \text{баллов})$? Чему равно ускорение клина $(15 \, \text{баллов})$? Ускорение свободного падения g считать известным.

Ответ: Клина давит на груз с силой (5/8)mg. Ускорение клина равно $(\sqrt{3} - 5/4)g$.

Решение: Записывая второй закон Ньютона для груза в проекции на ось, параллельную наклонной грани клина, находим, что сила трения $F_{\rm тp}$ равна $mg\sin 30^\circ$. При скольжении $F_{\rm тp}=\mu N$, где μ - коэффициент трения, а N - сила нормальной реакции (в данной задаче – сила давления клина на груз). Отсюда находим, что $N=mg\sin 30^\circ/\mu=(5/8)mg$. Записывая второй закон Ньютона в проекции на ось, перпендикулярную наклонной грани клина, находим ускорение груза $a=g\cos 30^\circ$ - $g\sin 30^\circ/\mu$. Проекция ускорения клина на эту ось равна ускорению груза (груз не отрывается от наклонной грани клина). Следовательно, ускорение клина равно $a/\sin 30^\circ=2a=(\sqrt{3}-5/4)g$.

2. (40 баллов) Человек массы m стоит на краю тележки, скрепленной со стенкой пружиной жесткости k (см. рис.). Масса тележки равна массе человека. В некоторый момент человек начинает идти по тележке к стенке с постоянной скоростью V относительно тележки. При какой длине тележки скорость человека относительно земли достигнет максимального значения (20 баллов)? Чему равна эта максимальная скорость (20 баллов)? Трением между тележкой и столом пренебречь.

Ответ: Длина тележки должна быть больше $\pi V \sqrt{2m/k}$. Максимальная скорость человека относительно земли равна 3V/2.

Решение: Из закона сохранения импульса следует, что сразу после начала движения скорости человека и тележки относительно земли будут равны V/2 и направлены в противоположные стороны: человек движется к стенке, тележка — от стенки. Выбрав направление горизонтальной оси х от стенки, а ее начало совпадающим с начальным положением левого конца тележки, запишем второй закон Ньютона в проекции на эту ось для тележки

$$ma_x = -kx + F_x$$

и для человека

$$ma_x = -F_x$$
.

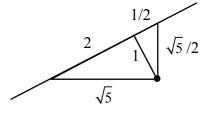
Здесь F_x – проекция на ось x силы, с которой человек действует на тележку, a_x – проекция ускорения тележки (и человека) на эту ось. Складывая два уравнения, получаем уравнение гармонического осциллятора

$$x'' + (k/2m)x = 0$$
.

Решение данного уравнения при начальных условиях x(0) = 0 и x'(0) = V/2 имеет вид

$$x = \frac{V}{2} \sqrt{\frac{2m}{k}} \sin \sqrt{\frac{k}{2m}} t.$$

Скорость тележки x' находится как производная от координаты по времени, т.е. равна


$$x' = \frac{V}{2} \cos \sqrt{\frac{k}{2m}} t.$$

Проекция скорости человека относительно земли на выбранную ось равна x'(t)-V. Величина этой скорости имеет максимальное значение 3V/2, которое достигается через полпериода после начала движения, т.е. через время $\pi\sqrt{2m/k}$. За это время человек пройдет по тележке расстояние $V\pi\sqrt{2m/k}$. Следовательно, длина тележки должна быть не меньше этого значения.

3. (20 баллов) Точечный заряд, расположенный на расстоянии 1 м от прямой, создает в ближайшей к нему точке прямой электрическое поле 10 В/м. Найти максимальное расстояние между точками на прямой, в которых заряд создает поля 8 В/м и 2 В/м (10 баллов), и угол между векторами напряженности электрического поля в этих точках (10 баллов)?

Ответ: Максимальное расстояние равно 2,5 м. Угол равен 90° .

Решение: Из закона Кулона находим расстояния от заряда до заданных точек на прямой (см. рисунок, где расстояния показаны в метрах). Расстояние между точками равно 2,5 м. Нетрудно убедиться, что $\left(2,5\right)^2 = \left(\sqrt{5}\right)^2 + \left(\sqrt{5}/2\right)^2$, т.е. расстояния удовлетворяют теореме Пифа-

гора. Значит, угол между векторами напряженности равен 90°.

4. (15 баллов) Полярные молекулы, у которых центры распределения положительных и отрицательных зарядов не совпадают, моделируют электрическим диполем. Известно, что напряженность электрического поля, создаваемого диполем, спадает с расстоянием r как $1/r^3$. При попадании в поле такого диполя молекулы, у которой центры положительных и отрицательных зарядов совпадают (неполярная молекула), происходит ее поляризация — молекула сама становится диполем, причем смещение центров положительных и отрицательных зарядов в молекуле пропорционально действующему на нее полю полярной молекулы. Как зависит от расстояния сила взаимодействия полярной и неполярной молекул?

Ответ: Сила спадает с расстоянием как $1/r^7$.

Решение: Сила F, действующая на индуцированный диполь со стороны полярной молекулы, равна разности сил притяжения и отталкивания, действующих со стороны полярной молекулы на положительный (q) и отрицательный (-q) заряды индуцированного диполя, т.е. $F = qE_+ - qE_- = q(E_+ - E_-)$, где E_+ и E_- значения напряженности поля полярной молекулы в точках, где расположены центры соответственно положительного и отрицательного зарядов. Разность E_+ - E_- в силу малости расстояния l между центрами зарядов можно представить в виде

$$E_{+} - E_{-} = \frac{dE}{dr} I$$

Поскольку $E \sim 1/r^3$, l также $\sim 1/r^3$, $\frac{dE}{dr} \sim 1/r^4$, то $F \sim 1/r^7$.